Heterogeneous dislocation nucleation from surfaces and interfaces as governing plasticity mechanism in nanoscale metals
نویسندگان
چکیده
We report the results of constant strain rate experiments on electroplated, single crystalline copper pillars with diameters between 75 and 525 nm. At slow strain rates, 10 3 s , pillar diameters with 150 nm and above show a size-dependent strength similar to previous reports. Below 150 nm, we find that the size effect vanishes as the strength transitions to a relatively size-independent regime. Strain rate sensitivity and activation volume are determined from uniaxial compression tests at different strain rates and corroborate a deformation mechanism change. These results are discussed in the framework of recent in situ transmission electron microscopy experiments observing two distinct deformation mechanisms in pillars and thin films on flexible substrates: partial dislocation nucleation from stress concentrations in smaller structures and single arm source operation in larger samples. Models attempting to explain these different size-dependent regimes are discussed in relation to these experiments and existing literature revealing further insights into the likely small-scale deformation mechanisms.
منابع مشابه
Near-ideal theoretical strength in gold nanowires containing angstrom scale twins
Although nanoscale twinning is an effective means to enhance yield strength and tensile ductility in metals, nanotwinned metals generally fail well below their theoretical strength limit due to heterogeneous dislocation nucleation from boundaries or surface imperfections. Here we show that Au nanowires containing angstrom-scaled twins (0.7 nm in thickness) exhibit tensile strengths up to 3.12 G...
متن کاملQuantifying the early stages of plasticity through nanoscale experiments and simulations
Nucleation and kinetics of defects at the atomic scale provide the most fundamental information about the mechanical response of materials and surfaces. Recent advances in experimental and computational analyses allow us to study this phenomenon in the context of nanoindentation and localized mechanical probing of surfaces. Here, we present an analytical formulation of the elastic limit that pr...
متن کاملAvailability Analysis For Heterogeneous Nucleation In A Uniform Electric Field
Industrial demands for more compact heat exchangers are a motivation to find new technology features. Electrohydrodynamics (EHD) is introduced as a promising phenomenon for heat transfer enhancement mechanisms. Similar to any new technology, EHD has not been understood completely yet and requires more fundamental studies. In boiling phase change phenomena, nucleation is the dominant mechanism i...
متن کاملUncommon dislocation processes at the incipient plasticity of stepped gold surfaces.
Gold vicinal surfaces (788), with a high density of steps, along with (111) flat surfaces taken as a reference, have been nanoindented and their resulting penetration curves and related defect structure comparatively analyzed by AFM and atomistic simulations. Stepped surfaces are shown to yield at smaller loads than (111) ones in agreement with calculations of the critical resolved shear stress...
متن کاملNanoscale anisotropic plastic deformation in single crystal aragonite.
The nanoscale anisotropic elastic-plastic behavior of single-crystal aragonite is studied using nanoindentation and tapping mode atomic force microscopy imaging. Force-depth curves coaxial to the axis exhibited load plateaus indicative of dislocation nucleation events. Plasticity on distinct slip systems was evident in residual topographic impressions where four pileup lobes were present after ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011